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For arbitrary positive values of wt and ¢,

b _ (e “rs ]
Az (Az>¢=o cose & [w/z) ¥ Wil ©
sinwt . 4sin?(wt/2) wt
{(7{ - 1) sing -+ (——-—wztz — 1) Bl qosqb}

is obtained. I |¢p|~|wt 4 ¢|<% rad, the term in the braces is
less than 1072, and the correction term to (Az/Az), is less
than 5%, a relatively insignificant correction.

Hence, the kinematic description of the motion is consistent
with observations.

The radial acceleration 4, with which a drop falls away
from the rotating surface is given as 4, = (Azx/Az) (g/w?R) X
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w?B. When Az/Az and g/«?R are taken from the test values,
A; 22 0.8 »®R is found.
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Liquid Sloshing in a Cylindrical Quarter Tank

Hermur I. Baver*
NASA George C. Marshall Space Flight Center, Huntsville, Ala.

With the increasing size of space vehicles and their larger diameter, both of which lower
the natural frequencies of the propellants, the effects of propellant sloshing upon the stability -
of the vehicle are becoming more critical, especially since at launch usually a very large
amount of the total mass is in the form of liquid propellant. With increasing diameter, the
oscillating propellant masses and the corresponding forces increase. Furthermore, the nat-
ural frequencies of the propellant become smaller and shift closer to the control frequency
of the space vehicle. A relatively simple means of avoiding strong dynamic coupling of the
propellant motion and the control system is represented by compartmentation of propellant
containers with longitudinal walls. This results in smaller sloshing masses and larger
natural frequencies. Free and forced liquid oscillations in form of translatory, pitching, and
roll excitation have been determined for a cylindrical container of circular quarter cross sec-
tion. The fluid was assumed to be irrotational, inviscid, and incompressible. The velocity
potential of the liquid is obtained from the solution of Laplace’s equation with linearized

boundary conditions. Forces and moments of the liguid are obtained by integration of the

pressure distribution along the container walls.

The results of the theoretical studies com-

pared with available experimental values are in good agreement.

1. Introduction

N space boosters, the diameter of the propellant tanks be-
comes rather large, and the response of the vehicle to the
motions of the container liquid will greatly affect the sta-
bility and control of the space vehicle. Propellant oscilla-
tions are important because there is a possibility of extreme
amplitudes if the excitation frequency is in the neighborhood
of one of the natural modes of the propellant. Since a very
large amount of the total weight of the vehicle is in the form
of liquid propellant, the influence of propellant sloshing upon
the stability of the vehicle becomes more critical with inereas-
ing tank diameter. The close grouping of control frequency
and natural frequencies of the propellant, the relatively low
structural frequencies, the very rapid increase of the oscillat-
ing propellant masses, and propellant forces with increasing
diameter demand thorough investigation of this phenomenon.
The problem of free fluid oscillations in a circular eylindri-
cal contalner was treated in 1829 by Poisson. Because the
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theory of Bessel functions was unavailable at the time, the
result was not completely interpreted.’ In 1876, Rayleigh?
gave the solution for free oscillations in rectangular and
cylindrical tanks of circular cross section. In recent years,
the problem of forced fluid oscillations has grown in im-
portance.® Graham and Rodrigues* determined the forced vi-
bration of liquid in rectangular containers, whereass Lorell gave
the flow of g fluid in a two-dimensional rectangular container
and cylindrical tank of circular cross section for translational
excitation. Almost at the same time, many reports appeared
about forced fluid oscillations in ¢ylindrical tanks.6™  Fluid
oscillations in cylindrical tanks with annular®® and elliptic!!
cross seetion as well as those in horizontal circular cylindrical
tanks and spherical containers!? have also been treated.

The natural frequencies of the propellant in cylindrical
tanks with circular cross section is proportional to the inverse
of the root of the tank diameter, whereas the sloshing masses
exhibit rather large magnitudes.

To eliminate the unfavorable effect of the propellant mo-
tion upon the stability of a space vehicle, various measures
can be explored. Internal damping in the liquid can be
introduced by fixed baffles’® or movable slosh suppression
devices such as rigid lids following the free propellant sur-
face or floating bodies partially submerged below the free
fluid surface. However, use of moving parts is usually
avoided because of structural and weight reasons.
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Fig. 1 Tank geometry and coordinate system.

Annular ring baffles introduce damping that is proportional
to the square root of the surface displacement at the tank
wall and to the three-halves power of the effective ring
area. Furthermore, the location of the baffle has a strong
influence and is approximately proportional to the reciprocal
e-function. These annular ring baffles, which are attached
at the inner wall of the tank, reduce the peak forces and mo-
ments of the propellant. However, the main influence, which
comes from the sloshing mass, is not considerably improved.
Another possible remedy is to subdivide the tanks with
longitudinal walls, such as a coaxial cylinder, radial sector
walls, or egg crate type of walls. This subdivision results in
smaller sloshing masses and larger natural frequencies of the
propellant. Another possibility is the clustering of tanks
of smaller diameter, but this has structural and weight
disadvantages. Radial walls for subdivision of a con-
tainer® 14 1% exhibit a more favorable result; one method in a
particular case consists of subdividing a circular cylindrical
tank by radial walls into four equal sector tanks. The
natural frequencies of the propellant in the container inerease,
and the slosh masses decrease and are distributed to various
modes, which is favorable to vehicle stability.

The theory of the response of a liquid in a circular-cylindri-
cal quarter tank is presented for free and forced oscillations
of the tank walls. Since the exact solution of this problem is
too complicated to obtain the values of the natural fre-
quencies and sloshing masses of the vibration modes, the
liquid is treated as inviscid. The assumption of an inviseid
liquid is justified, since the damping due to the friction of the
tank walls is usually of very small magnitude. In a cylindri-
cal container, the lower part of the liquid performs the forced
motion like a rigid body, and only the propellant in the
immediate vicinity of the free fluid surface oscillates by itself.
For stability investigations of space vehicles, the motion per-
pendicular to the trajectory is of main importance. For
this reason, our investigations are restricted to these mo-
tions. Free and forced vibrations in form of translatory,
pitching, and roll excitation of the container will be treated.
In these motions, the boundary conditions will be linearized.
Besides this inherent simplification, this approach has the
advantage that solutions of different excitations can be super-
imposed. The fact that the liquid is considered irrotational
permits the representation of the velocity vector of the fluid
as gradient of the velocity potential &.

Since the fluid is incompressible, the velocity potential must
be a solution of the Laplace equation, which does not con-
tain the time explicitly. This means that the flow pattern
in the tank is at any time determined only by the boundary
conditions holding at that time. Therefore, the analysis
consists of solving the Laplace equation for various time- and
space-dependent boundary conditions, which are, as well as
the free fluid surface condition, linearized.
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2. Basic Equations

An exact solution of the problem of liquid oscillations with
a free fluid surface in a cylindrical container with circular-
quarter cross section (Fig. 1) presents great difficulties. To
obtain the most important features of such a liquid system,
such as natural frequencies of the liquid and its response to
various excitations, assume inviscid, irrotational, and in-
compressible flow. This means that the velocity potential
& satisfies the Laplace equation

Vd =0 @n

The introduction of the velocity potential ® has the ad-
vantage that all mechanically interesting values (low ve-
locities and pressures) can be derived from one single func-
tion. The velocity distribution is obtained by differentia-
tion with respect to the spatial coordinates, and the pressure
p from the instationary Bernoulli equation:

(0®/d8) + 32+ (p/p) + g2 =0

The complete solution of Eq. (2.1) must satisfy the following
boundary conditions. At the tank walls, the normal ve-
locity of the liquid and the wall must be equal. The free
surface condition is obtained from the linearized kinematic
(0z/0t = 0®/dz) and the dynamic (p = 0) condition.

3. Free and Forced Fluid Oscillations

To obtain the mode shapes and natural frequencies of the
liquid, which are needed for the series expansion of the forced
liquid oscillation, start with the free fluid oscillations.

The free oscillations of a liquid in a cylindrical container
of radius a, circular-quarter cross section, and a free liquid
surface can be obtained by solving the Laplace equation
(2.1) with the linearized boundary conditions:

d¢/0z = 0 (3.1a)
at the container bottom z = —h
0¢/0r = 0 at the circular wallr = a (3.1b)
(L/r)(d¢/0¢) = 0 (3.1¢)
at the sector walls ¢ = 0, 7/2
(0%¢/0t%) + g(d¢/02) = 0 3.1d)

at the free liquid surface z = 0

The velocity potential becomes [considering the wall condi-
tions (3.1a-3.1¢) only]

¢(T, <p)z)t) = ZZ Amneiwm"t COSZmQO X
m n

cosh{en[(z/a) + (h/a)]} Ton (emn % ) (3.2)

cosh{en.(h/a)]

The values e, are the positive roots of J'om(e) = 0. The
equation for the frequencies of the liquid is obtained from
the surface condition (3.1d):

W2 = % = % €mn tanh(emn %) (3.3

mn =012 ...

From this, one recognizes that the natural frequencies of the
propellant are proportional to the root of the longitudinal
acceleration and decrease as the inverse root of the con-
tainer diameter. Therefore, for large containers, the nat-
ural frequencies of the liquid are small. For a certain tank
filling, the natural frequencies of the liquid do not change
any more with the liquid height because of tanh [en.(h/a)] = 1
(see Table 1). The square of the natural frequencies is
then w? =~ gen,/a. This expresses that the ratio w/(g/a)Y/?
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Table 1 Root of Jorn'(€na) = 0
a \" 0 1 2 3 4 5 6 7 8 9
0 - 3.832 3.054 5.318 8.105 9.648 11.716 13.821 15.917 18.104 20.189
1 7.016 6.706 9.282 11.735 14.115 16.448 18.745 21.015 23.264 25.495
2 10.173 9.969 12.682 15.268 17.774 20.223 22.629 25.002 27.347 29.670
3 13.324 13.370 15.964 18.637 21.229 23.761 26.246 28.694 31.112 33.504
4 16.471 16.348 19.196 21.932 24.587 27.182 29.729 32.237 34.712 37.160
5 19.616 19.513 22.401 25.184 27.889 30.535 33.131 35.689 38.212 40.707
6 22.760 22.672 25.590 28.410 31.155 33.842 36.481 39.079 41.643 44.178
7 25.904 25.826 28.768 31.618 34.397 37.118 39.792 42 426 45.052 47.595
8 29.047 28.978 31.939 34.813 37.620 40.371 43.075 45.740 48.371 50.971
9 32.189 32.127 35.104 38.000 40.830 43.607 46.338 49.030 51.687 54.315

changes its value only for small magnitudes of h/a < 1.
At higher modes, this value is essentially constant (enn'/%)
except for very small values 4/a (Fig. 2).

3.1 Forced Oscillations

For stability investigations of a space vehicle, the forces
and moments exerted by the liquid propellant have to be
known for an oscillation of the space vehicle about its nor-
mal trajectory. These motions are translatory oscillations
perpendicular to the flight path and rotational oscillations
about the lateral and the longitudinal axes. For this reason
the various cases of a container performing forced oscilla-
tions are investigated. Since the liquid in the lower part
of the container performs the same motion as the tank, it is
useful to express the potential ® as a sum of the rigid body
potential ¢ and a disturbance potential ¢:

‘§=¢0+¢‘

which is caused by the free surface motion.

(3.4

3.1.1 Translational excitation

The special case that describes the response of the liquid
in a cylindrical container of circular-quarter cross section
due to translational excitation of the container is obtained
from the Laplace equation (2.1) with the boundary condi-
tions

P/0r = Qe cose
at the cylinder wallr = a

(3.5a)

2d/d: = 0
3®/r0¢p = 0

0P/ro = —iQuuet™
at the sector wall = /2

at the tank bottom z = —h (3.5b)
at the sector wall = 0 (3.5¢)
(3.5d)

(0*p/0t?) + g(0P/0z) = 0 (3.5e)
at the free liquid surface z = 0
By separating the container motion from the potential P,
Jmn
Y210
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Fig. 2 Eigenfrequency parameter.

the wall boundary conditions of the disturbance potential

can be made homogeneous. With
® = [{Qra; cosp + ¢let® (3.6),
the boundary conditions are then
0¢/or =0 forr = a
0¢/0z = 0 forz = —h
¢/rd¢ = 0 for ¢ = 0, /2
g(0¢/0z) — Q2P = 1Q%ruy cose forz =0

The disturbance potential, which satisfies the Laplace
equation, has the same form as (2.4). For the sake of a
clearer representation, omitting the summation signs and the
indices m and n, and introducing the abbreviations { =
€nn(2/0), 0 = €nn(r/a), & = ema(h/a), and J(p) = Jonlena(r/
a)], the disturbance potential is

cosh({ + «)

o(r,¢2) = AJ(p) cos2me o

(3.7
From the free surface condition, one obtains the unknown
constants 4., if one expands cos ¢ in a Fourier series and the
function » in a Bessel series.’8 With » = Q/w as the ratio
of exciting to natural frequency, the velocity potential &
for translatory excitation of the container in the z direction is

&(r,0,2,t) = 1Qxee™ {r cos¢ +

Umbmnd (p) 2 cosh(x + ) cos2me
(1 — %% coshk

} 3.8

The first term (rigid body potential) satisfies the boundary
conditions at the container walls, whereas the second part
(disturbance potential) vanishes there. The condition of
the free surface is satisfied with both terms. The free sur-
face displacement measured from the undisturbed position is

— xoeim X

pe L) o
g \ 0t /:=0 g/a

T Ambmnn?®J (p) cos2m
l:a cosg + o = 19 3.9

The pressure distribution in the liquid is at a depth (—2):
p=-p %‘—f — Pge = pw.e™ X

anbman® cosh(& + )J(p)
@ — %? coshk

I:r cose + cos2m¢>] — Bgz

(3.10)

At the tank wall, r = qa, the pressure is obtained from
(3.10) by setting J(p) equal to Jem(emn). At the sector
walls ¢ = 0 and ¢ = 7/2, the cosine (cos2m¢) assumes
value one and (—1)=. The pressure distribution at the tank
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bottom is obtained by setting { = —x(z = —h). From the
pressure distribution, one obtains by integration the fluid
forces and moments. The resulting force in the x direction is

/2 {*0 a {*0
F.=a j; f_h Duait COS@dds — j; f_h Po=xs2 dr dz
(3.11)

The first integral represents the contribution of the pressure
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Fig. 3 Magnification factor of liquid forces for excitation
in x direction (measured values').
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at the circular wall, whereas the second integral stems from
the sector wall at ¢ = 7/2. The fluid force is (Fig. 3)
4n? (—1)=*1g,,bn, tanhk
Ta a — 79«
J ‘2m(€mn)
{(4:7”12 _ 1) + L0<€mn) (3.12)

F, = mQ2xet® [1 +

where
2 «©
Lo(emn) = — 37 Jom+2u+1 (€mn)
€ma w=0
The first term in (3.12) represents the inertial force, that is, the

F.
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Fig.5 Magnification factor for liquid forces for excitation
about y axis.

force for a solidified liquid. The liquid force in y direction is

4a.:bman? tanhk
mak(l — 7%

{ Jom(€mn)
dm2 — 1)

Fy = mQ2y, ™%
+ L,,(em,.)} (3.13)

The moment M of the liquid with respect to the point (0, 0, —
h/2) is given by

_ x/2 (*0 h
M,, = Qa J:) f—h Pwall §+ 4 COSgOd(pdt —_

a (*0 h
ﬂf_hp(p=1r/2 §+Z drdz +
/2 a
j; j:) Prottom r? COSngngT (3.14:)

The first integral again stems from the pressure distribution
at the circular wall, whereas the second integral represents
the contribution of the pressure at the sector wall. The
third part of the formula is due to the pressure at the tank



NOVEMBER 1963

L

Se10

h
4Ootr——- T4 _/
e}

\
\

0 0

|
|
1
1
|
I
\

60

-40

~80

e e Dl SNEE SO S

—

H
!
]
I
I
I
I
I
I
!
:
1

60

) ) l \ X
-80 \ } ‘
Fig. 6 Magnification factor for liquid moments for excita-
tion about y axis :

o
n
<
7]
o
P
o
<]
o

t
!
|
|
|
|
{
|
!
T
!
|
!
!

bottom. After integration, the moment is (Fig. 4)

1| 2 dbman’(=Dm
4h/a 7w aemn(l — 9%

JZm(emn) 2 1
{I:(W -1 + Lc(é”")][tanhk + P (COShK - 1)] +

2€mn2Lio(€mn) + 4dmga
(4m? — 1)k coshk 3T

M, = mQaxe™

(3.15)

Since the reference axis does not pass through the center
of gravity, the last term of Eq. (3.15) exhibits the static mo-
ment of the liquid. The moment M, is obtained in a similar
way and is

1 2 awbmy?
wh/a T aena(l — 1)

JZm(fmn) 2 ].
e e [ 3 (5= 1) ]+

M, = mQaxe X

2€2nnLio(€mn) 4dmga
(4m? — 1)« coshx} 37 (8.16)
where
_ 2(4m2 - ].) i J2m+2u+1 (emn)
La(em) = = EO @m+ 2 — D@m + 2+ 3)

The response of the liquid due to rotational excitation such
as pitching or roll oscillations can be obtained in a similar
way. The results are presented in Figs. 5-9.

4. Effective Moment of Inertia of Liquid

In the description of the liquid motion as a mechanical
model, the effective moment of inertia of the liquid in a com-

LIQUID SLOSHING IN A CYLINDRICAL QUARTER TANK 2605

120 \
S0 /
|

40

o

i
1
|
i
|
|
¥
i
1.G 20 3.0 4.0 5.0 § 8.0 7.0 80: 8.0
} } ) I
40 ‘l
|
I
|
|
|
1

a0

120 i—— ;

Fig.7 Magnification factor of liquid forces for roll excita-
tion.

8 8
!
[

B
1<)
o
o
o
o
~
L]
[+
o
—
0
o
©0

J;

‘
n
A
PRt (R ISR I

'
H

N

RN SR S

|
o §
_ ]

Fig. 8 Magnification factor of liquid moments M, = M,
for roll excitation.

Mg

¢ et 5
160 ‘ L
a.
o 10
12 LI
a
60 | -
l A=
T 1
u V =
SDLIDIFIED%O_’:’/{ "
Iy INFINITELY LONG QUARTER TANK
o D sl [ ! | | Q
16 2 30 49 50 | 60 70 80! 30

120 l
N e

Fig. 9 Magnification factor of liquid moment M. for voll
excitation.

pletely filled and closed container has to be known. It can
be obtained by solving the Laplace equation with the same
boundary conditions as in the pitching case, except that, for
the free fluid surface condition, the boundary condition for
the bottom is used with z = +4/2. The velocity potential
is then

B(r, 0,2,8) = 1000 l:—rz cosg +

26 Gnbmn SIDh{T (p)
€mn cOSh(x/2)

cos2m ga:l
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The pressure distribution is obtained from

o0, [h
p=—p at+gp[2~

Q20 et l:—rz coseg +

2+ 0™ (g — 7 cos¢)] =

20 @nbmn SIDRTT ()
€ma COShK/2

cos2m <pj| -+

By I:g — 24 6 (@ — 71 cos,go):l

With the introduction of an additional integral due to the
pressure distribution at the top of the container, the moment
can be determined. The effective moment of inertia of the
liquid is then

2
Iﬂe(f—maz{l <h> i+2( 1) Amb mnx

12 O E€mn>

2 tanh(fc/2) Jom(€mn)
[(1 - 22 ) (= + i) | -

2€mn?Li(€mn) tanhk/2
(dm? — Lk

The moment of the rigid body is
Iy rigia = ma? {TIE (h/a)? + %}

For roll excitation, the effective moment of inertia of the

liquid can be obtained and is
16 ma?

ma? 4
Izeff - 7 [:1 - <§ -

where the first term represents the moment of inertia of the
rigid body.

5. Comparison with Experimental Results

Comparison of the theoretical natural frequencies with
those of the measured values shows, as was already indicated
in Ref. 17, too high values. This comparison indicates that
the natural frequencies of the liquid in compartmented tanks
depend strongly upon the magnitude of the excitation ampli-
tude. They approach the theoretical values only when the
excitation is infinitesimal. It was found that the experi-
mental natural frequencies deviate from the theoretical for
an excitation amplitude of z, = 0.0016 a¢ by about 8%.
Perforation of the sector walls can maintain, by proper choice
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of the hole size, the mechanical features of the quarter tank
with some weight savings.

Since propellant sloshing occurs only in the upper portion
of the liquid and since the sloshing masses do not vary con-
siderably for values of h/a > 1, the experimental values?
compare favorably with the theoretical results of the present
paper (see Fig. 3).
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